
– 1 –

NCMAS 2020 Resource Request
Title: Star Formation and Feedback in a Turbulent Interstellar Medium

Lead CI: M. Krumholz (ANU)
Project: jh2

1. Scalability

1.1. General notes on scaling

100 101 102 103

NCPU

10-3

10-2

10-1

100

C
P
U

 T
im

e
 p

e
r 

ti
m

e
st

e
p
 [

s]

Total (hydro + ART + Comm)

ART + Comm.

ART Only

ART Overhead

RT

Ray Comm.

101 102 103

NCPU

101

102

103
W

a
ll 

C
lo

ck
 T

im
e
 [

C
P
U

 s
]

ART + Comm. (0.2 pc)

ART + Comm. (0.4 pc)

ART + Comm. Whole Domain

Fig. 1.— Results of a weak scaling
test (top) and a strong scaling test
(bottom) with ORION, from 1 to 1024
cores. The top panel (weak scaling)
shows the CPU time required to
advance the calculation one time step,
while the bottom (strong scaling)
shows total CPU-seconds, so in both
panels perfect scaling corresponds to
a flat line. In the top panel, black
diamonds show the total time, and
other symbols show the times taken
by individual sub-parts of the code
(see Rosen et al. 2017 for details).
In the bottom panel, the different
symbols show the computational cost
of the ray-tracing step depending on
the distance traversed by the rays; the
entire domain is 1 pc in length.

We plan to use four codes for this project, and
we discuss the scalability of each of them in turn.
However, before reporting on scalability, we provide
two caveats. First, the tests we have performed are
all on Raijin or on comparable hardware with fewer
CPUs per node than Gadi. We have extrapolated
to Gadi assuming that parallel efficiencies will be
comparable when using the same number of nodes.
Second, the three primary codes we plan to use, ORION,
enzo, and GIZMO, are all adaptive, and for this reason
scalability is much more problem-dependent than for
non-adaptive codes. ORION and enzo are Eulerian
adaptive mesh refinement (AMR) gas dynamics codes
that dynamically add higher resolution grids to meet
user-defined accuracy goals, and scalability inevitably
depends on the number and placement of such grids,
which change from problem to problem and even over
time within a single calculation. Similarly, GIZMO is
an arbitrary Lagrangian-Eulerian code that provides
adaptivity by organising the fluid elements it follows
into a tree-based hierarchy built on the local CFL
condition; within the tree, different groups of fluid
elements advance on different time steps. Thus
scalability depends on the distribution of CFL time
steps, and is much better for calculations where most
fluid elements advance on similar time steps than
for those where the cost is dominated by a small
number of elements that require much smaller time
steps than the rest. Given these caveats, the best
guide to scalability and cost for a particular problem
is generally just experience having used that code
on similar problems in the past. Despite this caveat,
we have performed some general scaling studies as a
rough guide, which we report below.

1.2. ORION

Our most recent performance studies for ORION

are detailed in Rosen et al. (2017), and all the figures
included here are reproduced from that paper. We
refer to the paper for full details of the testing, and
summarise only the most salient parts of the results
here. We performed all these studies on the NASA
Ames Research Center supercomputer Pleiades, using

https://www.nas.nasa.gov/hecc/resources/pleiades.html
u5014663
Highlight

u5014663
Sticky Note
Remove name and affiliations Remove project code

u5014663
Sticky Note
Unmarked set by u5014663

u5014663
Highlight

u5014663
Sticky Note
Change to:Recent performance studies for ORION are detailed in...



– 2 –

the Sandy Bridge nodes, which have hardware comparable to the Raijin Sandy Bridge nodes
(16 cores/node, FDR infiniband interconnects). The total cost of most ORION computations
is completely dominated by the radiative transfer step, and that step is also the hardest to
parallelise due to the non-local nature of radiative transfer; thus our scaling study focuses
on that part of the code. We are in the process of developing a new radiative transfer
methodology that will be accelerated by GPU, but since this is in development we cannot
report performance for it yet. We therefore report on the code in its current state.

102

103

104

105

W
a
ll 

C
lo

ck
 T

im
e
 [

C
P
U

 s
]

t = 15.22 kyr

Total

Hydro

Gravity

ART (Direct Rad)

FLD (Diffuse Rad)

Total Rad (ART+FLD)

101 102

NCPU

102

103

104

105

W
a
ll 

C
lo

ck
 T

im
e
 [

C
P
U

 s
]

t = 23.67 kyr

Fig. 2.— Scaling results for ORION

is a realistic calculation; a flat line
corresponds to perfect scaling. The
upper and lower panels correspond to
two different times in the simulation,
which have different numbers and
geometries of adaptive grids.

We performed three studies: weak scaling in
an idealised problem, strong scaling in an idealised
problem, and scaling in a real example problem.
Figure 1 shows the results of the weak and strong
scaling tests in idealised problems. For the weak
scaling test, we placed a single radiation source in the
centre of a (1 pc)3 region of dust and gas, resolved by
323 cells, for each CPU used in the test. For the strong
scaling test, we used a fixed grid of 2563 cells to resolve
a (1 pc)3 region with a single point source at its centre.
Neither test used adaptivity. The figure shows that,
in this idealised test, ORION has excellent weak scaling;
efficiency is > 50% even at 1024 cores (16 nodes).
For strong scaling, we find a similar result if the rays
traverse a significant portion of the computational
domain; efficiency is better than 50% even at 1024
cores (16 nodes). On the other hand the efficiency is
worse if the region over which the ray trace is being
done is a small portion of the computational domain,
so that some processors are idle.

Figure 2 shows a scaling test conducted in a
real, published scientific application (Rosen et al.
2016). This calculation does use adaptivity, and has
been evolved for a significant time so that the grid
layout is that produced naturally by the system being
simulated (in this case collapse of a gas cloud to form
a massive star). Black points show the total cost,
in CPU-seconds, per time step advance, while other
symbols show the cost for individual portions of the
code (hydrodynamics, gravity, adaptive ray trace,

and flux-limited diffusion radiation). This illustrates the dependence of the scaling on the
particular problem. At the later time (lower panel), the efficiency loss in going from 16 to
256 cores (1 to 16 nodes) is moderate, ≈ 50%, while the earlier time the calculation is only
≈ 30% efficient. The difference is that the earlier time slice has a smaller number of grids to
distribute across processors, producing worse load balancing. Fortunately, our experience in
Armillotta et al. (2018) was that we the grid layout was somewhat more forgiving than in the
Rosen et al. (2016) problem, so that we retained 50% efficiency out to 32 nodes. One Gadi,
this translates to 1536 cores.

1.3. enzo

We tested the strong scalability of enzo using a simulation of an M83-like barred spiral
galaxy similar to the one we plan to carry out in the coming year (see Project Description).
We simulated the evolution of this galaxy on the Raijin Broadwell nodes (28 cores/node) for 1

u5014663
Highlight

u5014663
Sticky Note
Change to:The experience of Armilotta et al. (2018) was that the grid layout...

u5014663
Highlight

u5014663
Sticky Note
Replace with:so that 50% efficiency out to 32 nodes was retained.



– 3 –

Myr of simulation time with 6 AMR levels, using 112 to 896 cores (4 to 32 nodes). In the test
simulation the peak resolution was 15 pc, and thus a factor of 2 worse than what we plan to
use for our final production runs; going to higher resolution should either leave the scalability
unchanged or improve it, since there will be more work to distribute. We show the total
CPU time required for this computation (excluding IO, which is negligible in a production
calculation) as a function of processor count in Figure 3.

0 200 400 600 800 1000
CPU count

0

1

2

3

4

5

CP
U 

tim
e 

[M
se

c]

0

25

50

75

100

125

150

175

200

Ce
ll 

ad
va

nc
e 

tim
e 

[
se

c]

CPU time
Time/advance

Fig. 3.— Results for our test of strong
scaling in enzo. The y axis shows the
total amount of CPU time (blue, left
axis) taken to perform a fixed amount
of work and the CPU time required
to advance a single cell through one
time step (orange, right axis); in both
cases perfect scaling corresponds to a
flat line, while a decreasing line as we
have found corresponds to better than
ideal scaling; such a result is possible
for reasons explained in the main text.

The test shows better than perfect scaling out to
448 cores (16 nodes) on Raijin, and perfect from 448 to
896 (32 nodes). Seemingly better than perfect scaling
is possible due to the subtleties of AMR: user-specified
accuracy goals require adding higher-resolution grids
at a minimum set of locations, but in practice the code
refines a somewhat larger volume, auto-tuning grid
placement and distribution to minimise communication
overhead. The efficiency of the auto-tuning process
depends on the CPU count. As a result, the higher
CPU count calculations shown in Figure 3 are able to
achieve the same accuracy goal using somewhat fewer
total cell advances, and with less communications
overhead due to better grid distribution. This result
demonstrates that we can efficiently use up to 32
Raijin nodes for this problem; assuming a similar node
count for Gadi, this is 1536 cores.

1.4. GIZMO

We have measured the strong scaling of GIZMO

on the Sandy Bridge nodes of Raijin (16 cores/node)
by running a simulation with a resolution of 3003 (27
million zones), using the same setup as that in Gentry
et al. (2019, see Progress Report): a series of clustered
supernovae exploding in the interstellar medium. For the test we run the problem for the
period between the first and second supernovae, when the hot bubble produced by the first
supernova is expanding.

0 100 200 300 400 500 600
CPU count

0.0

0.1

0.2

0.3

0.4

0.5

CP
U 

tim
e 

[M
se

c]

Fig. 4.— Strong scaling results for
GIZMO running on Raijin. The y axis
shows CPU time required to do a fixed
amount of work, so perfect scaling
corresponds to a flat line.

We ran the problem using 64 to 512 CPUs (4 to
32 nodes); for this test we use nodes with 64 GB of
memory each because on the 32 GB nodes the problem
does not fit in memory at the smallest CPU count.
However, this should not affect scalability. We show
the results of our strong scaling test in Figure 4. As
the plot shows, we have near-perfect scalability to 256
cores (16 nodes), and extremely good scalability out
to 512 cores (32 nodes). The efficiency in scaling from
64 to 512 cores is 73%. On Gadi, we therefore expect
this level of efficiency up to 1536 cores.

1.5. SLUG

SLUG is unlike all the other codes we plan to
use this year in that, as a Monte Carlo code, it is
embarrassingly parallel: every realisation of a stellar

population, and calculation of that stellar population’s light passing through the ISM, is



– 4 –

Calculation Code # Runs Cores CPU time Wall time SU cost
[kSU/run] [days/run] [kSU, total]

Galactic winds ORION 9 768 290 16 2610
Galactic chemodynamics

galaxy stage enzo 2 1536 450 12 900
zoom-in stage ORION 2 1536 1300 35 2600

Galactic centres GIZMO 2 1536 780 21 1560
Stellar populations SLUG 1 3072 2000 27 2000
Subtotal 9700
+10% overhead 970
Total 10640

Table 1: Summary of simulations and costs.

independent and serial. The code is implemented to allow either OpenMP or MPI-based
parallelism, but inter-process communication is limited to updating the count of number of
Monte Carlo trials completed. For this reason we do not present scalability data for SLUG,
since the scaling is trivially perfect.

2. Job resources

Our total request for all runs is 10.6 MSU. Costs of individual proposed calculations are
listed in Table 1, and explained below. Note that we add a 10% overhead. Roughly half of
this is for setup, testing, and contingency. The remainder is because storage limitations on the
scratch file system mean that we can only write checkpoints roughly once per hour, so for a
calculation running for the 24 hour wall clock limit, we typically lose the last few percent of
our run time after our last checkpoint write due to hitting the wall clock limit.

2.1. General notes

In general the CPU cost of an adaptive hydrodynamics or MHD calculation can be
expressed as

tCPU =
tadv
ε

(
trun
∆t0

) Lmax∑
i=0

2iNi (1)

where tCPU is the total CPU time required, trun is the duration of the simulation in physical
time, ∆t0 is the root time step taken at the coarsest resolution level, tadv is the time required
to advance a cell / fluid element through a single time step, Lmax is the maximum refinement
level (either AMR level for an AMR code like ORION or enzo, or level of time step hierarchy for
a tree code like GIZMO), Ni is the number of resolution elements on level i, and ε is the parallel
efficiency. The time step ∆t0 is generally set by the CFL condition, which we can express as
∆t0 = C∆x0/vsig, where C is the CFL number of the algorithm, ∆x0 is the spatial resolution
on the coarsest level of the hierarchy (cell size for an AMR code, twice the local smoothing
length h for an SPH-like code such as GIZMO), and vsig is the fastest signal speed. Thus we
express the computational costs for all our calculations using ORION, enzo, and GIZMO as

tCPU =
tadv
εC

(
trunvsig
∆x0

) Lmax∑
i=0

2iNi. (2)

We next discuss these factors for each planned simulation.



– 5 –

2.2. Project 1: Radiatively-driven galactic winds

As discussed in the project proposal, the basic setup of the simulations we plan to perform
matches that we previously used in Krumholz & Thompson (2012, 2013) and Wibking et al.
(2018) to study the radiation Rayleigh-Taylor instability (RRTI): a rectangular domain with
a reflecting boundary at the bottom, an open boundary at the top, and periodic boundaries
in the horizontal direction. The size of the domain is naturally expressed in units of the
dimensionless scale length h∗ = c2s,∗/g for the system, where cs,∗ is the isothermal sound
speed at the top of the atmosphere (dictated by the radiation flux) and g is the gravitational
acceleration; times are naturally expressed in units of t∗ = h∗/cs,∗.

In the horizontal directions, the domain must be large enough to contain the largest
unstable modes; the exact value of this scale depends on system parameters, but is typically
≈ 50h∗. In the vertical direction the box must be large enough that gas that is thrown upward
by radiatively-driven turbulent motion, but not actually unbound, has room to travel upward
and then fall back without encountering the top of the box. Based on our previous experience,
this requires a box that is at least twice as large in the vertical direction as the horizontal,
and four or eight times is better. For this reason, our fiducial setup will be a box that is
64h∗ × 64h∗ × 512h∗. Our maximum resolution is dictated by the need to resolve h∗ at least
marginally, so that we can capture the onset of the RRTI at small scales; this required a finest
resolution of ≈ h∗/4. We therefore plan to use three levels of AMR with a base grid resolution
of ∆x0 = h∗, giving a maximum resolution ∆x2 = h∗/4. We will refine the entire bottom 64h∗
of the box in the vertical direction to the maximum AMR level, the next 64h∗ to AMR level
1 (resolution ∆x1 = h∗/2), and leave the top 128h∗ at AMR level 0 (∆x0 = h∗). Thus the
number of cells on each level are N0,1,2 = (64 × 64 × 512, 128 × 128 × 256, 256 × 256 × 256).

Based on our previous experience, the total time required for the simulation to reach
statistical steady state is trun ≈ 100t∗, and the highest speeds we produce, in low-density gas
being driven into highly-supersonic motion by radiation forces, as vsig ∼ 20cs,∗. We generally
run ORION with a CFL number C = 0.4; the algorithm is formally stable up to C = 0.5, but
using 0.4 gives a margin of safety. Based on our testing above, we plan to use 16 Gadi nodes
(768 cores) for our standard case, which gives a parallel efficiency ε ≈ 0.75, though once Gadi
becomes available and we can test the efficiency of our code, we may increase or decrease the
node count. Finally, our measured cell advance time, again using the test from Rosen et al.
(2017) and described above, is tadv ≈ 1 msec. Inserting these factors into equation 2, we arrive
at a cost of 290 kSU per calculation. In order to map out parameter space, we plan to carry
out a total of 9 calculations, at three different values of the Eddington ratio (ratio of laminar
radiation force to gravity) times three different values of optical depth, for a total cost of 2.6
MSU.

2.3. Project 2: Galactic chemodynamics

This project uses two computational stages, a galactic one done with enzo and a zoom-in
star formation stage run with ORION. For the galaxy stage of the simulation, our parallel
efficiency ε ≈ 1 up to 32 nodes on Raijin, and we will run for trun = 700 Myr, roughly 3 galaxy
rotation periods at the galactocentric radius of the Sun, which is long enough to achieve
statistical steady state in the ISM. For enzo we use a CFL number C ≈ 0.3. Our base grid
has cells of size ∆x0 = 1 kpc, and the highest signal speeds are in supernova-heated gas where
the sound speed is very high, and vsig ≈ 1000 km s−1. The cell advance time determined from
our tests on Raijin is tadv ≈ 90 µsec (see Figure 3). In production calculations we will use
Lmax = 7, corresponding to a maximum resolution of ≈ 7 pc. The most uncertain part of our
time estimate is the cell counts, which are determined on the fly as the system evolves; the
counts in the tests presented in Section 1.3 provide only a very limited guide, since they are
obtained at an early stage in the simulation before it settles to steady state. That said, our

u5014663
Highlight

u5014663
Sticky Note
Change to:... perform matches that used by Krumholz &Thompson (2012, 2013) and Wibking et al. (2018)...

u5014663
Highlight
Remove "our".



– 6 –

past experience with simulations of this type, as presented in Fujimoto et al. (2018, 2019), is
that Ni ∼ 3 × 107 cells per level are typical on the finer levels (which dominate the total cost)
at late times. Assuming this to be the case, inserting the various factors into equation 2 gives
a total cost estimate of 450 kSU per computation. We will use 32 Gadi nodes; if our parallel
efficiency on Gadi proves worse than expected, we can reduce this to 16 nodes.

For the zoom-in stage using ORION, our measured parallel efficiency is ε ≈ 0.5 up to 32
nodes; though our efficiency is higher at 16 nodes, we accept a somewhat lower efficiency in
order to keep the total wall time of the simulations reasonable. As noted in the pervious
section, our measured cell advance times as determined are tadv ≈ 1 msec. (ORION’s parallel
efficiency is lower than enzo’s, and its cell advance times larger, because radiative transfer is
much harder to parallelise efficiently than gravity or hydrodynamics.) Following Armillotta
et al. (2018), we will run our simulations for trun ≈ 3 Myr, zooming in on a cubical region 384
pc on a side with a based grid of 5123 cells, giving a base grid resolution ∆x0 = 0.75 pc. Our
fastest signal speeds are in photoionised gas, where vsig ≈ 10 km s−1, so our coarse time step
size is ∆t0 ≈ 22 kyr. We use 6 AMR levels on top of this, reaching a maximum resolution
of 0.01 pc. We take estimates of cell counts from our first generation study, Armillotta et al.
(2018), where we found Ni ≈ 5123 on all levels. Inserting these factors into equation 2 (using
the exact cell counts from Armillotta et al.), we obtain a total cost of 1.3 MSU.

We plan to run two simulations, one of a galaxy like the Milky Way, and one using a
setup similar to M83, which has a stronger bar than the Milky Way and thus represents an
interesting contrast that will let us study the effects of bars. Thus the total cost of both stages
for two galaxies is 3.5 MSU.

2.4. Project 3: The life cycle of galaxy centres

Our galactic centre simulations uses GIZMO, and our practical experience with the
simulations presented in Armillotta et al. (2019) are that the cost tends to be dominated by
the coarsest rather than the finest levels of the hierarchy, the opposite of the ORION collapse
calculations. Thus to good approximation we can consider only the coarsest level. In the tests
shown in Figure 4, we find a parallel efficiency ε = 0.73 for 32 nodes. Our advance time is
tadv ≈ 300 µsec, slower than enzo due to the extra work of neighbour-finding in a Lagrangian
method, but faster than ORION due to the lack of radiative transfer. At our target mass
resolution ∆M = 300 M�, we will have N0 ≈ 4 × 106 Lagrangian fluid elements. We run for
a total of 350 Myr, but during the first 300 Myr we turn off self-gravity and simply let the
simulation run to reach statistical steady state; because we do not reach high densities during
this phase, the smoothing scale h is large, and thus the time steps are large and the cost is
negligible. Almost all of the cost is incurred after we turn on self-gravity, and during this
phase we run for a time trun = 50 Myr. The peak density we reach is n ≈ 108 H atoms cm−3,
and the corresponding spatial resolution is h ≈ (3∆M/4πnmH)1/3 ≈ 0.03 pc, corresponding
to an effective resolution ∆x ≈ 0.06 pc. The peak signal speed is in supernova-heated gas,
which due to its high temperature has a sound speed vsig ≈ 1000 km s−1. Finally, our GIZMO

runs use a CFL number C = 0.5. Inserting these factors into equation 2, we obtain a cost
per simulation of 780 kSU. As discussed in the Project Description, we plan to carry out two
simulations, one with an alternate Milky Way potential, and one to mimic M83. We plan to
use 32 Gadi nodes for each run.

2.5. Project 4: Stochasticity-robust stellar population inference

As explained above, our Monte Carlo stellar population synthesis calculations with SLUG

are embarrassingly parallel. Each Monte Carlo realisation involves two steps. First, we
generate the spectrum of a stellar population, and then we calculate the propagation of the
light through the ISM and predicts the observable nebular line emission; this second step

u5014663
Highlight

u5014663
Sticky Note
Change to:...the first generation Armillotta et al (2018) study, which found that ...



– 7 –

uses the photoionisation and radiative transfer code cloudy (Ferland et al. 2013), which SLUG

calls as a subroutine. Generating a stellar population requires at most a few seconds, so
the cost is dominated by the radiative transfer step. This is variable, since cloudy uses an
iterative method to solve the simultaneous equations of radiative transfer and statistical and
chemical equilibrium for a large set of atoms and ions, and the number of iterations required
for convergence depends on problem parameters such as the gas density and the intensity of
the ionising radiation. Based on testing on the Avatar cluster at ANU, which has processors
similar to those on the Raijin Sandy Bridge nodes, we find an average of ≈ 4 minutes on a
single core.

The Monte Carlo library we seek to construct will be used to produce a Gaussian kernel
density estimate (KDE) of the joint distribution of physical properties (star cluster age and
mass, ISM elemental abundance) and light output. The KDE requires a bandwidth, which
must be chosen large enough that the results are not dominated by the shot noise of the
Monte Carlo realisation, but which we want to make as small as possible to ensure that
any uncertainties in the metal abundances we derive will be dominated by the inherent
stochasticity of the stellar population or by measurement errors, rather than by the resolution
of the KDE. The required resolution is difficult to estimate a priori, since stellar properties are
highly-correlated, but in our experiments with star clusters we showed that 107 realisations is
sufficient to achieve errors of ≈ 0.1 dex in reconstructed star cluster mass and age, smaller
than the typical uncertainties induced by stochastic sampling (Krumholz et al. 2015b). For the
present application we anticipate needing a somewhat larger number of realisations, because
we are adding an extra dimension (metal abundance), but we can compensate by sampling a
much smaller range of stellar population ages, since only stars ∼< 5 Myr old produce observable
levels of nebular emission. Based on preliminary testing, we anticipate needing a library of
≈ 3 × 107 realisations; using the cost estimate above, the total amount of CPU time required
is ≈ 2 MSU. In practical terms, we will generally use 64 nodes at a time to keep the total wall
clock time reasonable, though of course we can vary this as needed given the embarrassingly
parallel nature of the calculation.

3. Storage

3.1. Memory

Our calculations will fit comfortably within the standard 4.0 GB / core memory footprint
of a standard node on Raijin or Gadi. We are CPU-bound, not memory-bound.

3.2. Scratch space on /short

We require significantly more than the standard 1 TB quota on the /short file system
due to the need for checkpoints. All our codes run for longer than the queue wall clock limit,
and therefore checkpoint regularly to allow restarts. These checkpoints also allow analysis of
intermediate states in the hydrodynamic simulations. While SLUG checkpoints are modest in
size and do not necessitate any special treatment, those produced by ORION, enzo, and GIZMO

are substantially larger, because they must contain the full state of the calculation in order to
allow restart. We estimate the storage requirements as follows:

Project 1: galactic winds. For the grid configuration described above, we have 23 million
cells. In each cell we store the density, three components of momentum density, total energy,
three components of magnetic field, radiation energy density, and (once our new M1 method
becomes available) three components of radiation flux, for a total of 12 components. Each is
an 8-byte double, so the total size of a checkpoint is 2.2 GB, or 53 GB per 24 hours.

u5014663
Highlight

u5014663
Sticky Note
Remove

u5014663
Highlight

u5014663
Sticky Note
Remove



– 8 –

Project 2: galactic chemodynamics. The galactic stage of our calculations, using enzo,
has ≈ 2 × 108 cells over all levels, and ≈ 40 quantities per cell: density, momentum density,
total energy, and magnetic field, plus ≈ 30 passive scalars representing abundances of various
elements. Thus each checkpoint is ≈ 64 GB in size. During the zoom-in phase using ORION,
this grows slightly due to the addition of four radiation quantities, to ≈ 70 GB per checkpoint,
or 1.7 TB per 24 hours.

Project 3: galactic centres. The GIZMO simulation snapshots are smaller, since they
contain only 4 × 106 elements and no radiation quantities or passive scalars. For 8 quantities
per resolution element (5 hydrodynamic variables and 3 positions), each checkpoint is ≈ 0.3
GB in size, or 6 GB per 24 hours.

Our practice is to to offload data to massdata at the end of each pass through the queue,
but this takes time, and we would like to be able to restart simulations immediately, without
waiting for data transfer to complete. Our wall clock times are challenging for us to complete
within a year, and having to wait for transfers to complete before submitting the continuation
of a run would represent a significant bottleneck in our workflow. Consequently, we would
like to have space to store several days worth of outputs at any given time, and therefore we
request a /scratch quota of at least 10 TB, with 20 TB preferred if possible given the new
/scratch file system. Our current quota is 10 TB, and we have hit it several times in 2019; we
are asking for more time in 2020, and thus if possible would prefer a somewhat larger quota as
well.

3.3. Long-Term Storage on massdata

We must archive our outputs for the purposes of analysis. While we have some storage at
RSAA, which we use to host subsets of the data for local analysis, transferring the entire set
of outputs over the internet is not feasible. We therefore request space on massdata to archive
our runs for later analysis. Multiplying the wall time estimates in Table 1 by our estimates
of the data production rates from each simulation in Section 3.2, we estimate that our work
will generate a total of 300 TB of data. However, we do not need to save every checkpoint
permanently, as our checkpointing frequency is driven primarily by desire not to waste CPU
cycles by having calculations terminate too long after checkpointing. For the purposes of
analysis our experience is that saving every other checkpoint over most of the run is sufficient,
so we request 150 TB of long term storage on massdata.

4. Algorithms and workflows

4.1. Algorithms and parallelism

ORION. ORION is a block-structured, sub-cycled AMR code for astrophysical radiation-MHD
plus gravity. It is developed primarily by Mark Krumholz at ANU and collaborators at UC
Berkeley, UT Austin, and Harvard in the US. The AMR scheme follows the approach of Berger
& Oliger (1984) and Berger & Colella (1989): we decompose the domain into a base grid
at the coarsest level, and recursively add finer, covering grid where needed. Levels advance
hierarchically: we first advance all grids on the coarsest AMR level, denoted level 0, through a
time step ∆t0. Then we advance the next-finest grids (level 1) through two time steps of size
∆t1 = ∆t0/2, and perform a synchronisation step to ensure conservation of mass, momentum,
and energy across the level 0-1 boundary. This process is repeated recursively, so each time
we update AMR level 1 we update all level 2 grids twice and synchronise across the level 1-2
boundary, and so forth. We obtain ghost cells at the edges of grids on level i that do not
have neighbours on level il by coarsening cells on level i+ 1 if those exist, or by interpolating
cells on level i − 1 if not. The code uses MPI-based parallelism: grids are distributed across

u5014663
Highlight

u5014663
Sticky Note
Replace with:available to us



– 9 –

processors using a knapsack algorithm to achieve optimal load balance, and grids exchange
information at their mutual boundaries using point-to-point MPI communication, with a
minimum of global synchronisation. For MHD, the exchange consists of passing information
about ghost cells to neighbouring grids. For self-gravity and for the diffuse radiation part
of the radiation solve, we use an MPI-based multigrid method, implemented in the hypre

library1. For the long characteristic radiation solve, we use the HARM2 algorithm introduced
by Rosen et al. (2017), which minimises communications overhead by using a non-blocking,
opportunistic MPI method to overlap communication and computation.

enzo. The enzo code (Bryan et al. 2014) is a community-supported AMR fluid dynamics
code specialised in cosmological and galaxy simulations. It solves the equations of ideal
MHD plus gravity for a system consisting a fluid plus collisionless point masses, which can
represent either stars or dark matter. It also includes subgrid prescriptions for radiative
cooling, star formation, stellar feedback, including a detailed nucleosynthetic module that
our group has added based on the SLUG stochastic stellar population synthesis code. The
AMR implementation and parallelisation methods in enzo are essentially the same as those
of ORION – Berger & Oliger (1984)-style AMR with MPI parallelism. There are two primary
differences. First, rather than using the knapsack algorithm to distribute grids, enzo uses
a space-filling Peano-Hilbert curve to minimise the placement of adjacent grids on different
processors, thereby reducing interprocessor communication costs. Second, rather than using a
multigrid method for self-gravity, enzo uses a Fourier method.

GIZMO. GIZMO is a meshless MHD plus gravity code using a smoothed particle hydrodynamics
(SPH) arbitrary Lagrangian-Eulerian (ALE) scheme. It is based on discretisation of the
volume using a smoothing kernel, similar to traditional SPH, but then uses a Riemann solver
rather than the traditional SPH solver to obtain fluxes between zones. The zone interfaces
can either be adjusted so as to maintain constant mass per zone (meshless finite mass) or to
maintain constant volume per zone (meshless finite volume). Details of the algorithm are given
in Hopkins (2015) and Hopkins & Raives (2016). The hydrodynamic update operates within a
hierarchical tree format where particles are grouped based on neighbour and on the time step
with which they must be updated. The same tree partitioning is used to update gravity in a
tree scheme (Springel 2010). The tree is distributed in memory using an MPI paradigm.

SLUG. As explained above, since it is a Monte Carlo code, SLUG is embarrassingly parallel. It
offers both openMP- and MPI-based parallel options, but the sole communication involved is
updating the number of Monte Carlo trials completed.

4.2. Workflow

The workflows for Projects 1 − 3 are all the same, and are very simple: starting from an
initial state, we run each simulation, writing checkpoints to /scratch approximately once per
hour as the simulation runs. When the simulation terminates due to reaching the wall clock
limit for the queue in which we are running, we restart from the last saved checkpoint and
continue until we reach the desired run time. While the restart is running or waiting in queue,
we move the checkpoints from the previous job from /scratch to massdata. We also move
selected snapshots to local machines for analysis and visualisation; our primary analysis tool
is yt (Turk et al. 2011), a Python-based visualisation and analysis platform for 3D data.

1http://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-
methods/software



– 10 –

Our workflow for Project 4 is equally simple, since this project just requires accumulating
a large Monte Carlo library. When we start SLUG, a run will go for the maximum allowed
wall clock time before terminating. We will then move the output checkpoints containing the
accumulated trials off Gadi to local machines after each run period, aggregating them into a
singe large library as we do so.

References

Armillotta, L., Krumholz, M. R., Di Teodoro, E. M., & McClure-Griffiths, N. M. 2019, MNRAS, submitted,
arXiv:1905.01309

Armillotta, L., Krumholz, M. R., & Fujimoto, Y. 2018, MNRAS, 481, 5000
Berger, M. J., & Colella, P. 1989, J. Comp. Phys., 82, 64
Berger, M. J., & Oliger, J. 1984, J. Comp. Phys., 53, 484
Bryan, G. L., Norman, M. L., O’Shea, B. W., et al. 2014, ApJS, 211, 19
da Silva, R. L., Fumagalli, M., & Krumholz, M. 2012, ApJ, 745, 145
Ferland, G. J., Porter, R. L., van Hoof, P. A. M., et al. 2013, RMxAA, 49, 137
Fujimoto, Y., Chevance, M., Haydon, D. T., Krumholz, M. R., & Kruijssen, J. M. D. 2019, MNRAS, 487, 1717
Fujimoto, Y., Krumholz, M. R., & Tachibana, S. 2018, MNRAS, 480, 4025
Gentry, E. S., Krumholz, M. R., Madau, P., & Lupi, A. 2019, MNRAS, 483, 3647
Hopkins, P. F. 2015, MNRAS, 450, 53
Hopkins, P. F., & Raives, M. J. 2016, MNRAS, 455, 51
Krumholz, M. R., Fumagalli, M., da Silva, R. L., Rendahl, T., & Parra, J. 2015a, MNRAS, 452, 1447
Krumholz, M. R., McKee, C. F., & Klein, R. I. 2004, ApJ, 611, 399
Krumholz, M. R., & Thompson, T. A. 2012, ApJ, 760, 155
—. 2013, MNRAS, 434, 2329
Krumholz, M. R., Adamo, A., Fumagalli, M., et al. 2015b, ApJ, 812, 147
Li, P. S., Martin, D. F., Klein, R. I., & McKee, C. F. 2012, ApJ, 745, 139
Martin, D. F., Colella, P. C., & Graves, D. 2008, JCP, 227, 1863
Rosen, A. L., Krumholz, M. R., McKee, C. F., & Klein, R. I. 2016, MNRAS, 463, 2553
Rosen, A. L., Krumholz, M. R., Oishi, J. S., Lee, A. T., & Klein, R. I. 2017, J. Comp. Phys., 330, 924
Springel, V. 2010, ARA&A, 48, 391
Turk, M. J., Smith, B. D., Oishi, J. S., et al. 2011, ApJS, 192, 9
Wibking, B. D., Thompson, T. A., & Krumholz, M. R. 2018, MNRAS, 477, 4665


	Scalability
	General notes on scaling
	ORION
	enzo
	GIZMO
	SLUG

	Job resources
	General notes
	Project 1: Radiatively-driven galactic winds
	Project 2: Galactic chemodynamics
	Project 3: The life cycle of galaxy centres
	Project 4: Stochasticity-robust stellar population inference

	Storage
	Memory
	Scratch space on /short
	Long-Term Storage on massdata

	Algorithms and workflows
	Algorithms and parallelism
	Workflow




